
Ayman Al Zaatari
11 December 2014

Assignment 9 Solution

1

Assignment 9 Solution

Ex1:

a)

 18 <= x 17x + 11 <= 18x +x <= x2
 17x + 11 <= C x2

 f(x) ∊ O(x2) for k=18 and C=1

 If f(x) ∉ Ω(x2) 17x + 11 > C x2 for C >0 and x >=k

x > 18 18x >= 17x + x > 17x + 11 18x > Cx2
dividing by x, 18 > Cx => x < C1 , for C1 = C/18, but x > k =>
impossible

f(x) ∉ Ω(x2)

f(x) ∉ θ(x2)

b)

 x2 + 1000 ≤ 1000x2 for x>1000

f(x) ∊ O(x2) for C=1000 and k=1000

 x2 + 1000 ≥ x2 for x>1000
f(x) ∊ Ω(x2) for C=1 and k=1000

f(x) ∊ θ(x2) for k=1000

c)

 logx < x x logx ≤ x2 for x > 1

f(x) ∊ O(x2) for k=1 and C=1

 Assume f(x) ∊ Ω(x2) xlogx >= C x2 such that C>0, |

 logx >= Cx logx/x >= C , but we know that the limit at infinity = 0,

 false Assumption

 f(x) ∉ Ω(x2)

f(x) ∉ θ(x2)

d)

 x4/2 ≤ Cx2 x2 ≤ 2C x <Sqrt(2C)

f(x) ∉ O(x2)

 x4/2 ≥ Cx2 => x2 ≥ 2C for C=1 and k=2
f(x) ∊ Ω(x2) for C=1 and k=2

Ayman Al Zaatari
11 December 2014

Assignment 9 Solution

2

f(x) ∉ θ(x2)

e)

 2x ≤ Cx2
 x ≤ C + 2logx x/2logx <= (C+1)/2logx…At infinity, the

limits would be ∞ <= 0 which is false

 f(x) ∉ O(x2)

 2x ≥ Cx2 => x ≥ C + 2logx which is true for x > 10 and C = 1

f(x) ∊ Ω(x2) for C=1 and k=10

f(x) ∉ θ(x2)

f)

let x=a+ε for 0 <= ε < 1, a2 ≤ ⌊x⌋·⌈x⌉ ≤ (a+1)2

 a ≤ x ≤ a+1
a2 ≤ ⌊x⌋·⌈x⌉ ≤ (a+1)2 ≤ 3a2 ≤ Cx2 for x>1
f(x) ∊ O(x2) for C=3 and k=1

 x2 = (a+ε) 2 = a2 + 2aε + ε2 >= a2

x2 ≤ ⌊x⌋·⌈x⌉ ≤ (a+1)2

f(x) ∊ Ω(x2) for C=1 and k=1

f(x) ∊ θ(x2)

Ex2:

 1000 log n, sqrt(𝑛), n log n, n2/1000000, 2n, 3n, 2n!

Ex3:
We can pick the function with highest order when we have addition, and give

the multiplaction of the functions when we have mutliplication

a) f(x) = O(n3) * O(logn) +O(17logn)*O(n3) = O(n3logn)

b) f(x) = O(2n)*O(3n) = O(6n)

c) f(x) = O(nn)*O(n!) = O(nn × n!)

Ex4:
a)

 f(x) = x2, its obviously Θ(x2)

 g(x) = 2x2 +x – 7, for x > 7 > -7 2x > x-7 > 0 and x2 > 2x

 2x2 +x -7 <= 2x2 + 2x <= 4x2

Ayman Al Zaatari
11 December 2014

Assignment 9 Solution

3

 g(x) is Θ(x2)

 f and g are of same order

b)

 f(x) = x which is obviously Θ(x)

 g(x) =⌊x+1/2⌋, consider 2 cases of x

a. x = a + ε, and ε < 0.5, then ⌊x+1/2⌋ = a = x - ε, then its Θ(x)

b. x = a + ε, and ε > 0.5, then ⌊x+1/2⌋ = a +1 = x +(1- ε), then its

Θ(x)

f and g are of same order

 c)

 f(x) = log(x2) = 2logx which is obviously Θ(logx)

 g(x) = log(x2+1)

Need to prove:

C1 logx <= log(x2+1) <= C2 logx

2C1logx <= 2log(x^2 +1) <= 2C2logx
XC1 <= x2+1 <= XC2, which is true C1 = 0.5, C2 = 3, and x > 3
 g is Θ(logx)
 f and g are of same order

d)

 f(x) = log10x = log2x/ log210, which is obviously Θ(lgx)

 g(x) = log2x, which is obviously Θ(lgx)

f and g are of same order

Ex5:

Applying the following algorithm for getting

 will be done as follows:

Step Previous Value Resulting Value

1

2
i

i+1

k

So, in K steps, we will have

, so to calculate , we will need log(n) steps

However, the naïve way for calculating , starting with 1, and multiplying by x,
will need n steps instead of log(n)…so the first way is more efficient

Ayman Al Zaatari
11 December 2014

Assignment 9 Solution

4

Ex6:
1 Day = 24 * 60 * 60 = 86400 seconds.

a) (10-11)*logn = 86400

n=286400 E11
b) (10-11)*1000n = 86400

n=86.4×1011
c) (10-11)*n2 = 86400

n = sqrt(86400×1011)
d) (10-11)*1000n2 = 86400

n = sqrt(86.4×1011)
e) (10-11)*n3 = 86400

n = √

f) (10-11)*×2n = 86400

n = log(86400×1011)
g) (10-11)*×22n = 86400

n = log(86400×1011)/2

h) (10-11)*×

 = 86400

n = log(log(86400×1011))

Ex8:
procedure OccurMoreThanOnce (a1, a2, . . . , an: nondecreasing integers)

for i:= 1 to n-1
 while(i < n-1 && ai+1 = ai)
 i++
 print(ai)

if(n = 1 || an

 != an-1)
 print(an)

The worst case complexity of this algorithm is Θ(n)

Ex9:
To check if a set of n talks can be scheduled together, we need Θ(nlgn) –
Sort, then check if there are conflicts

We have 2n subsets for n talks. Thus the running time will be O(nlgn * 2n)

Ex10:
-Linear search finds the value in O(n), so doubling the size will result in
doubling the number of comparisons
-Binary search find the value in O(lgn), so doubling the size will result in 1
extra comparison

