Assignment 9 Solution

Ex1:

a)

- $18<=x \rightarrow 17 x+11<=18 x+x<=x^{2}$
$\rightarrow 17 x+11<=C x^{2}$
$\rightarrow \mathrm{f}(\mathrm{x}) \in \mathrm{O}\left(\mathrm{x}^{2}\right)$ for $\mathrm{k}=18$ and $\mathrm{C}=1$
- If $f(x) \notin \Omega\left(x^{2}\right) \rightarrow 17 x+11>C x^{2}$ for $C>0$ and $x>=k$
$x>18 \rightarrow 18 x>=17 x+x>17 x+11 \rightarrow 18 x>C x^{2}$
dividing by $\mathrm{x}, 18>\mathrm{Cx}=>\mathrm{x}<\mathrm{C}_{1}$, for $\mathrm{C} 1=\mathrm{C} / 18$, but $\mathrm{x}>\mathrm{k}=>$ impossible
$\rightarrow \mathrm{f}(\mathrm{x}) \notin \Omega\left(\mathrm{x}^{2}\right)$
$\rightarrow \mathrm{f}(\mathrm{x}) \notin \theta\left(\mathrm{x}^{2}\right)$
b)
- $x^{2}+1000 \leq 1000 x^{2}$ for $x>1000$

$$
\rightarrow f(x) \in O\left(x^{2}\right) \text { for } C=1000 \text { and } k=1000
$$

- $x^{2}+1000 \geq x^{2}$ for $x>1000$

$$
\rightarrow f(x) \in \Omega\left(x^{2}\right) \text { for } C=1 \text { and } k=1000
$$

$\rightarrow f(x) \in \theta\left(x^{2}\right)$ for $k=1000$
c)

- $\log x<x \rightarrow x \log x \leq x^{2}$ for $x>1$

$$
f(x) \in O\left(x^{2}\right) \text { for } k=1 \text { and } C=1
$$

- Assume $f(x) \in \Omega\left(x^{2}\right) \rightarrow x \log x>=C x^{2}$ such that $C>0, \mid$
$\rightarrow \log x>=C x \rightarrow \log x / x>=C$, but we know that the limit at infinity $=0$,
\rightarrow false Assumption
$\rightarrow \mathrm{f}(\mathrm{x}) \notin \Omega\left(\mathrm{x}^{2}\right)$
$\rightarrow f(x) \notin \theta\left(x^{2}\right)$
d)
- $\mathrm{x}^{4} / 2 \leq \mathrm{Cx}^{2} \rightarrow \mathrm{x}^{2} \leq 2 \mathrm{C} \rightarrow \mathrm{x}<\operatorname{Sqrt}(2 \mathrm{C})$
$\rightarrow \mathrm{f}(\mathrm{x}) \notin \mathrm{O}\left(\mathrm{x}^{2}\right)$
- $x^{4} / 2 \geq C x^{2}=>x^{2} \geq 2 C$ for $C=1$ and $k=2$
$\rightarrow f(x) \in \Omega\left(x^{2}\right)$ for $C=1$ and $k=2$
$\rightarrow f(x) \notin \theta\left(x^{2}\right)$
e)
- $2^{x} \leq \mathrm{Cx}^{2} \rightarrow \mathrm{x} \leq \mathrm{C}+2 \log \mathrm{x} \rightarrow \mathrm{x} / 2 \log \mathrm{x}<=(\mathrm{C}+1) / 2 \log x$...At infinity, the limits would be $\infty<=0$ which is false
$\rightarrow \mathrm{f}(\mathrm{x}) \notin \mathrm{O}\left(\mathrm{x}^{2}\right)$
- $2^{x} \geq C x^{2}=>x \geq C+2 \log x$ which is true for $x>10$ and $C=1$
$\rightarrow f(x) \in \Omega\left(x^{2}\right)$ for $\mathrm{C}=1$ and $\mathrm{k}=10$
$\rightarrow f(x) \notin \theta\left(x^{2}\right)$
f)

$$
\text { let } x=a+\varepsilon \text { for } 0<=\varepsilon<1, \rightarrow a^{2} \leq[x] \cdot[x] \leq(a+1)^{2}
$$

- $a \leq x \leq a+1$
$a^{2} \leq[x] \cdot[x] \leq(a+1)^{2} \leq 3 a^{2} \leq C x^{2}$ for $x>1$
$\rightarrow f(x) \in O\left(x^{2}\right)$ for $C=3$ and $k=1$
- $x^{2}=(a+\varepsilon)^{2}=a^{2}+2 a \varepsilon+\varepsilon^{2}>=a^{2}$
$\rightarrow x^{2} \leq[x] \cdot[x] \leq(a+1)^{2}$
$\rightarrow f(x) \in \Omega\left(x^{2}\right)$ for $C=1$ and $k=1$
$\rightarrow f(x) \in \theta\left(x^{2}\right)$

Ex2:

$1000 \log n, \operatorname{sqrt}(n), n \log n, n^{2} / 1000000,2^{n}, 3^{n}, 2 n!$

Ex3:

We can pick the function with highest order when we have addition, and give the multiplaction of the functions when we have mutliplication
a) $f(x)=O\left(n^{3}\right)^{*} O(\log n)+O(17 \log n)^{*} O\left(n^{3}\right)=O\left(n^{3} \log n\right)$
b) $\mathrm{f}(\mathrm{x})=\mathrm{O}\left(2^{\mathrm{n}}\right)^{\star} \mathrm{O}\left(3^{\mathrm{n}}\right)=\mathrm{O}\left(6^{\mathrm{n}}\right)$
c) $f(x)=O\left(n^{n}\right)^{*} O(n!)=O\left(n^{n} \times n!\right)$

Ex4:

a)

- $f(x)=x^{2}$, its obviously $\Theta\left(x^{2}\right)$
- $g(x)=2 x^{2}+x-7$, for $x>7>-7 \rightarrow 2 x>x-7>0$ and $x^{2}>2 x$

$$
\rightarrow 2 x^{2}+x-7<=2 x^{2}+2 x<=4 x^{2}
$$

$\rightarrow \mathrm{g}(\mathrm{x})$ is $\Theta\left(\mathrm{x}^{2}\right)$
$\rightarrow f$ and g are of same order
b)

- $f(x)=x$ which is obviously $\Theta(x)$
- $g(x)=[x+1 / 2]$, consider 2 cases of x
a. $x=a+\varepsilon$, and $\varepsilon<0.5$, then $[x+1 / 2]=a=x-\varepsilon$, then its $\Theta(x)$
b. $x=a+\varepsilon$, and $\varepsilon>0.5$, then $[x+1 / 2]=a+1=x+(1-\varepsilon)$, then its $\Theta(x)$
$\rightarrow f$ and g are of same order
c)
- $f(x)=\log \left(x^{2}\right)=2 \log x$ which is obviously $\Theta(\log x)$
- $g(x)=\log \left(x^{2}+1\right)$

Need to prove:
$\mathrm{C}_{1} \log \mathrm{x}<=\log \left(\mathrm{x}^{2}+1\right)<=\mathrm{C}_{2} \log \mathrm{x}$
$2^{\text {C1 } \log x}<=2^{\log \left(x^{\wedge} 2+1\right)}<=2^{\text {C2logx }}$
$\mathrm{X}^{\mathrm{C1}}<=\mathrm{x}^{2}+1<=\mathrm{X}^{\mathrm{C} 2}$, which is true $\mathrm{C}_{1}=0.5, \mathrm{C}_{2}=3$, and $\mathrm{x}>3$
$\rightarrow g$ is $\Theta(\log x)$
$\rightarrow \mathrm{f}$ and g are of same order
d)

- $f(x)=\log _{10} x=\log _{2} x / \log _{2} 10$, which is obviously $\Theta(\lg x)$
- $g(x)=\log _{2} x$, which is obviously $\Theta(\lg x)$
$\rightarrow f$ and g are of same order

Ex5:

Applying the following algorithm for getting $x^{2^{k}}$ will be done as follows:

Step	Previous Value	Resulting Value
1	x^{1}	x^{2}
2	x^{2}	x^{4}
i	$x^{2^{i-1}}$	$x^{2^{i}}$
$\mathrm{i}+1$	$x^{2^{i}}$	$x^{2^{i+1}}$
k	$x^{2^{k-1}}$	$x^{2^{k}}$

So, in K steps, we will have $x^{2^{k}}$, so to calculate x^{n}, we will need $\log (\mathrm{n})$ steps
However, the naïve way for calculating x^{n}, starting with 1 , and multiplying by x, will need n steps instead of $\log (\mathrm{n})$...so the first way is more efficient

Ex6:

1 Day $=24$ * 60 * $60=86400$ seconds.
a) $\begin{aligned} & \left(10^{-11}\right)^{*} \log n=86400 \\ & \mathrm{n}=2^{86400} \mathrm{E} 11\end{aligned}$
b) $\left(10^{-11}\right)^{\star} 1000 \mathrm{n}=86400$

$$
\mathrm{n}=86.4 \times 10^{11}
$$

c) $\left(10^{-11}\right)^{*} \mathrm{n}^{2}=86400$

$$
\mathrm{n}=\operatorname{sqrt}\left(86400 \times 10^{11}\right)
$$

d) $\left(10^{-11}\right)^{*} 1000 \mathrm{n}^{2}=86400$

$$
\mathrm{n}=\operatorname{sqrt}\left(86.4 \times 10^{11}\right)
$$

e) $\left(10^{-11}\right)^{*} \mathrm{n}^{3}=86400$
$n=\sqrt[3]{86400 \times 10^{11}}$
f) $\left(10^{-11}\right)^{*} \times 2^{n}=86400$

$$
\mathrm{n}=\log \left(86400 \times 10^{11}\right)
$$

g) $\left(10^{-11}\right)^{*} \times 2^{2 n}=86400$ $n=\log \left(86400 \times 10^{11}\right) / 2$
h) $\left(10^{-11}\right)^{*} \times 2^{2^{n}}=86400$ $n=\log \left(\log \left(86400 \times 10^{11}\right)\right)$

Ex8:

procedure OccurMoreThanOnce ($a_{1}, a_{2}, \ldots, a_{n}$: nondecreasing integers)

$$
\begin{aligned}
& \text { for } \mathrm{i}:=1 \text { to } \mathrm{n}-1 \\
& \quad \begin{array}{l}
\text { while }\left(\mathrm{i}_{1}<\mathrm{n}-1 \quad \& \& \mathrm{a}_{\mathrm{i}+1}=a_{i}\right) \\
\quad \operatorname{print}\left(\mathrm{a}_{\mathrm{i}}\right)
\end{array} \\
& \operatorname{if}\left(\mathrm{n}=\underset{\operatorname{print}\left(a_{n}\right)}{\left.1 \| a_{n}!=a_{n-1}\right)}\right.
\end{aligned}
$$

The worst case complexity of this algorithm is $\Theta(n)$

Ex9:

To check if a set of n talks can be scheduled together, we need $\Theta(n \operatorname{lgn})$ Sort, then check if there are conflicts

We have 2^{n} subsets for n talks. Thus the running time will be $O(n l g n ~ * ~ 2 n) ~$

Ex10:

-Linear search finds the value in $\mathrm{O}(\mathrm{n})$, so doubling the size will result in doubling the number of comparisons
-Binary search find the value in $\mathrm{O}(\operatorname{lgn})$, so doubling the size will result in 1 extra comparison

