Assignment 9 Solution

<u>Ex1:</u>

a)
•
$$18 \le x \Rightarrow 17x + 11 \le 18x + x \le x^2$$

 $\Rightarrow 17x + 11 \le C x^2$
 $\Rightarrow f(x) \in O(x^2) \text{ for } k=18 \text{ and } C=1$
• If $f(x) \notin \Omega(x^2) \Rightarrow 17x + 11 > C x^2 \text{ for } C >0 \text{ and } x >=k$
 $x > 18 \Rightarrow 18x >= 17x + x > 17x + 11 \Rightarrow 18x > Cx^2$
dividing by x, $18 > Cx => x < C_1$, for $C1 = C/18$, but $x > k =>$
impossible
 $\Rightarrow f(x) \notin \Omega(x^2)$
 $\Rightarrow f(x) \notin \Theta(x^2)$

b)

- $x^2 + 1000 \le 1000x^2$ for x>1000 $\Rightarrow f(x) \in O(x^2)$ for C=1000 and k=1000
- $x^2 + 1000 \ge x^2$ for x>1000 \Rightarrow f(x) $\in \Omega(x^2)$ for C=1 and k=1000

→
$$f(x) \in \theta(x^2)$$
 for k=1000

C)

- $\log x < x \rightarrow x \log x \le x^2$ for x > 1 $f(x) \in O(x^2)$ for k=1 and C=1
- Assume f(x) ∈ Ω(x²) → xlogx >= C x² such that C>0, |
 → logx >= Cx → logx/x >= C , but we know that the limit at infinity = 0,
 → false Assumption
 → f(x) ∉ Ω(x²)

d)

•
$$x^4/2 \le Cx^2 \Rightarrow x^2 \le 2C \Rightarrow x < Sqrt(2C)$$

 $\Rightarrow f(x) \notin O(x^2)$

→f(x) ∉ θ(x²)

• $x^4/2 \ge Cx^2 \Longrightarrow x^2 \ge 2C$ for C=1 and k=2 \Rightarrow f(x) $\in \Omega(x^2)$ for C=1 and k=2

$$→$$
f(x) ∉ θ(x²)

e)

• $2^x \le Cx^2 \Rightarrow x \le C + 2\log x \Rightarrow x/2\log x \le (C+1)/2\log x...At$ infinity, the limits would be $\infty \le 0$ which is false

→ $f(x) \notin O(x^2)$

• $2^x \ge Cx^2 \Longrightarrow x \ge C + 2\log x$ which is true for x > 10 and C = 1→ $f(x) \in \Omega(x^2)$ for C=1 and k=10

$$→$$
f(x) ∉ θ(x²)

f)

let $x=a+\varepsilon$ for $0 \le \varepsilon < 1$, $\Rightarrow a^2 \le |x| \cdot [x] \le (a+1)^2$

- $a \le x \le a+1$ $a^{2} \le [x] \cdot [x] \le (a+1)^{2} \le 3a^{2} \le Cx^{2}$ for x>1 → $f(x) \in O(x^{2})$ for C=3 and k=1
- $x^2 = (a+\epsilon)^2 = a^2 + 2a\epsilon + \epsilon^2 >= a^2$ $\Rightarrow x^2 \le |x| \cdot [x] \le (a+1)^2$ \rightarrow f(x) $\in \Omega(x^2)$ for C=1 and k=1

 \rightarrow f(x) $\in \theta(x^2)$

Ex2:

1000 log n, sqrt(n), n log n, $n^2/1000000, 2^n, 3^n, 2n!$

Ex3:

We can pick the function with highest order when we have addition, and give the multiplaction of the functions when we have multiplication

a) $f(x) = O(n^3) * O(logn) + O(17logn)*O(n^3) = O(n^3logn)$

b)
$$f(x) = O(2^n)^*O(3^n) = O(6^n)$$

c)
$$f(x) = O(n^{n}) * O(n!) = O(n^{n} \times n!)$$

<u>Ex4:</u> a)

- $f(x) = x^2$, its obviously $\Theta(x^2)$
- $g(x) = 2x^2 + x 7$, for $x > 7 > -7 \rightarrow 2x > x 7 > 0$ and $x^2 > 2x$ → $2x^2 + x - 7 \le 2x^2 + 2x \le 4x^2$

→ g(x) is $\Theta(x^2)$

→ f and g are of same order

b)

- f(x) = x which is obviously $\Theta(x)$
- g(x) =[x+1/2], consider 2 cases of x
 - a. x = a + ε, and ε < 0.5, then [x+1/2] = a = x ε, then its Θ(x)
 b. x = a + ε, and ε > 0.5, then [x+1/2] = a +1 = x +(1- ε), then its Θ(x)
 - →f and g are of same order

c)

- $f(x) = log(x^2) = 2logx$ which is obviously $\Theta(logx)$
- $g(x) = log(x^2+1)$

Need to prove:

C₁ logx <= log(
$$x^{2}+1$$
) <= C₂ logx
2^{C1logx} <= 2^{log($x^{2}+1$)} <= 2^{C2logx}
X^{C1} <= $x^{2}+1$ <= X^{C2}, which is true C₁ = 0.5, C₂ = 3, and x > 3
→ g is $\Theta(logx)$
→ f and g are of same order

d)

- $f(x) = \log_{10}x = \log_2 x / \log_2 10$, which is obviously $\Theta(Igx)$
- g(x) = log₂x, which is obviously Θ(lgx)
 →f and g are of same order

<u>Ex5:</u>

Applying the following algorithm for getting x^{2^k} will be done as follows:

Step	Previous Value	Resulting Value
1	x ¹	<i>x</i> ²
2	x ²	<i>x</i> ⁴
i	$x^{2^{i-1}}$	$x^{2^{i}}$
i+1	$x^{2^{i}}$	$x^{2^{i+1}}$
k	$x^{2^{k-1}}$	x^{2^k}

So, in K steps, we will have x^{2^k} , so to calculate x^n , we will need log(n) steps

However, the naïve way for calculating x^n , starting with 1, and multiplying by x, will need n steps instead of log(n)...so the first way is more efficient

<u>Ex6:</u>

 $\overline{1 \text{ Day}} = 24 * 60 * 60 = 86400 \text{ seconds.}$

- a) $(10^{-11})*\log n = 86400$ n=2^{86400 E11}
- b) $(10^{-11})*1000n = 86400$ n=86.4×10¹¹
- c) $(10^{-11})*n^2 = 86400$ n = sqrt(86400×10¹¹)
- d) $(10^{-11})^*1000n^2 = 86400$
- n = sqrt(86.4×10¹¹) e) $(10^{-11})^*n^3 = 86400$
 - $n = \sqrt[3]{86400 \times 10^{11}}$
- f) $(10^{-11})^* \times 2^n = 86400$ n = log(86400×10¹¹)
- g) $(10^{-11})^* \times 2^{2n} = 86400$ n = log(86400×10¹¹)/2
- h) $(10^{-11})^* \times 2^{2^n} = 86400$ n = log(log(86400×10^{11}))

<u>Ex8:</u>

procedure OccurMoreThanOnce $(a_1, a_2, ..., a_n$: nondecreasing integers) for i:= 1 to n-1

The worst case complexity of this algorithm is $\Theta(n)$

<u>Ex9:</u>

To check if a set of n talks can be scheduled together, we need $\Theta(nlgn) - Sort$, then check if there are conflicts

We have 2ⁿ subsets for n talks. Thus the running time will be O(nlgn * 2ⁿ)

<u>Ex10:</u>

-Linear search finds the value in O(n), so doubling the size will result in doubling the number of comparisons

-Binary search find the value in O(Ign), so doubling the size will result in 1 extra comparison